VARIABLE SPEED ON SCREW COMPRESSORS

Current and future trends 14.04.2016

Dorian Vlaeminck Export & Business development

AGENDA

- I. The interest behind variable speed compressors
- II. Available options in a particular range (500-1500 kW Air Cooled)
 - a. Standard
 - b. Variable Frequency drive
 - c. AFD with Permanent magnet motors
 - d. New trends...
- III. Illustrative Case

<u>Comfort application runs most of the time at part load</u>*

- Better capacity modulation
- <u>Start/stop's reduced considerably</u>
- Lower inrush current

Up to 45% reduction

Starting current reduced by 5

II. Available options

a. Standard screw compressors

for HVAC professionals

II. Available options

b. Standard AFD compressors

	Compressor	Screw type (GP2)
	Unloading method	AFD
	Minimum load	20% (chiller)
	Application	Comfort CoolingPart-loadoperation
	Refrigerant	R134a/R513
At	ic 🔪	

II. Available options

C. Permanent magnet motor Screw

Compressor	Screw type (GP4)
Unloading method	AFD3 ™
Minimum load	15% (chiller)
Application	 Comfort Cooling Part-load High part and full load efficiency std
Refrigerant	R134a

II. Available options

d. New trends...

- Best of market Full & Part Load Efficiency
- EUROVENT certified
- Low GWP R1234ZE, Safe: Non-toxic, R1234ze is A1 in Europe and cannot be ignited at room temperature. (acc. CLP reg. EC 1272/2008)
- High Speed Centrifugal compressors (Turbocor)
- Integrated within Trane's latest innovations
 - Microchannel condenser
 - EC Fans standard
 - CHIL* Evaporator (reduced charge)
 - Trane UC800 Integrated Controls
 - Free Cooling Option
- 450 1250kW (R1234ZE) / 1600kW (R134a)

"III. Illustrative case Typical 850kW cooling AC chiller

Model Refrigerant Investment Capacit EER **ESEER** y (kW) 100\$ **RTAC SE** R134a +/-850 2,89 3,85 +/-850 RTAF R134a +6% +20% 115\$ (Optional R513) HSE +/-850 140\$ RTAE R134a +17% +32% SINTESIS 160\$ EXCELLENT **GVAF** R1234ze +/-850 +22% +50% (Optional R134a)

III. Illustrative case

Typical 850kW cooling AC chiller

<u>Case 1</u>

- Process application
- Working most of the time over 80% of total load

	Model	Refrigerant	Capacity (kW)	EER	ESEER	Investment
•	RTAC SE	R134a	+/-850	2,89	3,85	100\$

Reduced investment cost and maximize EER (HE, XE application)

III. Illustrative case

Typical 850kW cooling AC chiller

Case 2

- Comfort application
- Importance of part load performances

	Model	Refrigerant	Capacity (kW)	EER	ESEER	Investment
	RTAF HSE	R134a (Optional R513)	+/-850	+6%	+20%	115\$
CRA	RTAE	R134a	+/-850	+17%	+32%	140\$

Higher investment costs but mostly recovered through reduced operating costs

III. Illustrative case

Typical 850kW cooling AC chiller

Case 3

for HVAC profession

- Comfort application
- Importance of part load performances
- Environmental impact is central (BREEAM, LEED,...)

	Model	Refrigerant	Capacit y (kW)	EER	ESEER	Investment
SINTESIS EXCELLEN	GVAF	R1234ze (Optional R134a)	+/-850	+22%	+50%	160\$

Higher investment cost recovered through reduced operating cost and **environmental impact optimisation**