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Why is an ice cube more efficient to cool 
my glass than 0°C liquid water?
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Temperature: an indicator of sensible
and latent heat
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Unlike ice cube, latent reservoir of 0°C 
liquid water is already filled
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Equilibrium is achieved at 17°C 
with 0°C liquid water 
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Equilibrium is achieved at 7°C 
with the ice cube
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Main characteristics and differences between
real PCMs and ideal PCMs
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Phase Change Materials
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Melting
Temperature Tf

Latent Heat
El [kJ/L]

Phase Change Materials… for building 
applications
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1. Kalnæs, S.E. and B.P. Jelle, Phase change materials and products for building 
applications: A state-of-the-art review and future research opportunities. Energy 
and Buildings, 2015. 94: p. 150-176.
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Is it something
new?

Telkes M. (1949) Storing solar heat in 
chemicals - A report on the Dover house
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PCM for building applications: an historical
perspective

± 2000

Micro-encapsulation

1949

Macro-encapsulation

Shape-Stabilized PCMs

Immersion

± 1980

P. Schossig (2005) 
point of view

2014

Kosny (2014) 
point of view
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P. Schossig (2005) point of view: limitation 
of previous works

• PCMs that are not encapsulated may interact with the building structure 
and change the properties of the matrix materials, or leakage may be a 
problem over the lifetime of many years. 

• Macro- capsules have the disadvantage that they have to be protected
against destruction while the building is used (no drilled holes or nails in 
the walls/ceiling).(…) Another problem with macro-capsules is the 
decreasing heat transfer rate during the solidification process when PCMs
like paraffins are used, with poor heat transfer coefficients in the solid
state. This may prevent the system from discharging completely overnight. 

• Due to these limitations, none of the PCM products had a big market
impact. 
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Classification of PCMs integration in 
building

EnvelopeSystems

PCMs

1 2
3

1. System applications
2. Passive applications
3. Active applications

Ressources
Occupant 
comfort
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Technical specifications for PCMs selection
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1. Soares, N., et al., Review of passive PCM latent heat thermal energy storage systems 
towards buildings’ energy efficiency. Energy and Buildings, 2013. 59: p. 82-103.



Commercial PCM products for passive 
applications
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Thermal mass and water reservoir analogy
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Thermal mass in the « building system »
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PCMs change thermal mass shape
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Levers for action to optimise thermal mass
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Classical PCM use to increase thermal mass 
in lightweight buildings
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Case study: effect of thermal mass optimisation 
on cooling loads in a south-oriented office 

• Scenarios for 
cooling

• Thermal mass variation 
without PCM

• Thermal mass variation 
with PCM

1 m2 PCM/m2 floor

Gains

Loss
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Effect of different scenarios on the annual
cooling energy (kWh/m2 an) 
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Effect of different scenarios on the annual
cooling energy (kWh/m2 an) 
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Effect of thermal mass on the annual
cooling energy (kWh/m2 an) 
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Effect of thermal mass + PCM on the annual
cooling energy (kWh/m2 an)
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Cooling loads evolution (kWh/m2 an) in 
different scenarios
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PCM in Building 
Applications
to Optimise 

Thermal MassSTOCC
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Appendix 1: Ecooling in function of Tf,
ΔTf and El
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Appendix 2: Ecooling in function of PCM quantity: 
increasing of width and number of panels
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Appendix 3: cooling loads in the south-
oriented office
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