HOW TO OPTIMISE ENERGY STORAGE IN BUILDINGS?

Which applications for phase change materials? 27/09/2017

Gilles Baudoin Research assistant (UCL-Architecture et Climat)

Phase Change Materials

In Building Applications

To Optimise Thermal Mass

Phase Change Materials

Why is an ice cube more efficient to cool my glass than 0°C liquid water?

Temperature: an indicator of sensible and latent heat

for HVAC profession

Main characteristics and differences between real PCMs and ideal PCMs

Phase Change Materials

In Building Applications

Phase Change Materials... for building applications

1. Kalnæs, S.E. and B.P. Jelle, *Phase change materials and products for building applications: A state-of-the-art review and future research opportunities.* Energy and Buildings, 2015. **94**: p. 150-176.

Macro-encapsulation

Shape-Stabilized PCMs

P. Schossig (2005) point of view: limitation of previous works

- PCMs that are not encapsulated may interact with the building structure and change the properties of the matrix materials, or leakage may be a problem over the lifetime of many years.
- Macro- capsules have the disadvantage that they have to be protected against destruction while the building is used (no drilled holes or nails in the walls/ceiling).(...) Another problem with macro-capsules is the decreasing heat transfer rate during the solidification process when PCMs like paraffins are used, with poor heat transfer coefficients in the solid state. This may prevent the system from discharging completely overnight.
- Due to these limitations, none of the PCM products had a big market impact.

Technical specifications for PCMs selection

Table 2

Main criteria that govern the selection of PCMs.

Thermal and physical properties	 Suitable phase-change temperature in the desired operating temperature range High thermal conductivity and good heat transfer
	- High latent heat of transition per unit mass
	- High specific heat and high density
	 Congruent melting and long term thermal stability
	 Favourable phase equilibrium and no segregation
	 Small volume change on phase-change
	 Small vapour pressure at operating temperature
Kinetic properties	 High nucleation rate and little or no supercooling of the liquid phase
	 High rate of crystallization
Chemical properties	 Complete reversible melt/freeze cycles
	 Long term chemical stability and no degradation after a large number of melt/freeze cycles
	 No corrosiveness and capability with construction materials
	 Nontoxic, non-flammable and non-explosive
Economic properties	- Abundant and available
	– Cost effective
Environmental properties	 Low embodied energy
	 Separation facility from the other materials and recycling potential
	 Low environmental impact and non-polluting

1. Soares, N., et al., *Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency.* Energy and Buildings, 2013. **59**: p. 82-103.

Commercial PCM products for passive applications

Energain

ENRG Blanket

Knauf

Fig. 3. Dupont de Nemours PCM composite wallboard, composed of 60% of microencapsulated paraffin [38].

SSPCM

for HVAC profession

Macroencapsulation

Microencapsulation

Phase Change Materials

In Building Applications

To Optimise Thermal Mass

Thermal mass in the « building system »

for HVAC professiona

Levers for action to optimise thermal mass

Classical PCM use to increase thermal mass in lightweight buildings

PCM

« Lightweight » Building PCM Envelope

Fig. 3. Dupont de Nemours PCM composite wallboard, composed of 60% of micro capsulated paraffin [38].

Case study: effect of thermal mass optimisation on cooling loads in a south-oriented office

- Scenarios for cooling
- Thermal mass variation without PCM
- Thermal mass variation with PCM 1 m2 PCM/m2 floor

Gains

Loss

Effect of different scenarios on the annual cooling energy (kWh/m2 an)

Effect of different scenarios on the annual cooling energy (kWh/m2 an)

S0 Heavyweight S1 = S0 + Heat Recovery Gains S2 = S1 + Solar protection int ТС ΛT T_{ext} Intérieur Extérieu S3 = S2 + Diurnal FreePassive Cooling Loss 25 S4 = S3 + Night Free15 Cooling Day Night Cooling System

for HVAC profession

Effect of thermal mass on the annual cooling energy (kWh/m2 an)

SO Heavyweight

Effect of thermal mass + PCM on the annual cooling energy (kWh/m2 an)

Cooling loads evolution (kWh/m2 an) in different scenarios

PCM in Building Applications to Optimise Thermal Mass

> Gilles Baudoin Architecture et Climat - UCL

Appendix 1: Ecooling in function of T_f, ΔT_f and E

Optimum T_f 23°C

∧ ΔT_f, **∧** E cooling (1,3,6,10)

1 m2 exchange surface/ m2 floor E₁ 110 J/g; T_f 23; Δ T_f 1 0,53 cm PCMs wallboard Appendix 2: Ecooling in function of PCM quantity: increasing of width and number of panels

Appendix 3: cooling loads in the southoriented office

