INTERACTION HEAT PUMPS AND THE ELECTRICITY GENERATION SYSTEM

System value of residential heat pump demand response 27 September 2017

Dieter Patteeuw Post-doctoral researcher KU Leuven

Balance electric grid: now SUPPLY = DEMAND

Balance electric grid: future SUPPLY = DEMAND

Balance electric grid: future **SUPPLY** DEMAND Ρ 4 P / Ρ Ρ t t t t freq. Atic for HVAC professionals 4

Flexibility heat pump

Flexibility heat pump

"Demand response"

Balance electric grid: future **SUPPLY** DEMAND P 1 Ρ P Ρ t t t t freq. Atic for HVAC professional 7

Example output. 2 days

(d) Mean temperatures, with DR

Overview

- Context
- Integrated operational model
- Highlights research
- Conclusion

Belgian case study: model

- Scenario 2030
- Impact 250 000 heat pumps with/without demand response

Belgian case study: peak load

Belgian case study: CO₂

Lower CO₂ compared to a condensing gas boiler

Belgian case study: CO₂ How?

<u>Efficiency</u>

Gas -> CCGT -> Heat pump

1 * 0,5 * 3 - 4

Demand response

More efficient power plants

Belgian case study: CO₂ How?

Add. electricity consumption (kWh/year/building)

13

- Same mix as Belgian case study
- 1 million well-insulated buildings
 - 5 to 100% participation
- Results
 - Max. 150 EUR/a/part. operational
 - Max. 300 EUR/a/part. peak shaving
 - Unnecessary: Larger ΔT , larger hot water tank

Higher participation rates

-> Lower gains per participant

• 30% solar

• 30% wind

Overview

- Context
- Integrated operational model
- Highlights research
- Conclusion

Conclusion

- Exploration value demand response heat pumps
 - CO₂ reduction 10-20%
 - Reduce peak demand
 - Value 50-400 EUR/part/year
 - 1 to 10% higher electricity use
- PhD text

for HVAC profession

- dieter.patteeuw@kuleuven.be
- lieve.helsen@kuleuven.be

