

BREATHING WINDOWS

Bricker Project 13/09/2018

Antoine Parthoens ULiège Luc Pireels

Greencom

Why do we need to ventilate?

- We spend the major part of our time inside buildings
- Airtightness is coming higher and higher
- Contaminant mass flows is constant or increasing

Mechanical ventilation with heat recovery

Centralized system

- + Filter change
 Oversized heat exchanger
- Ducting network required
 Maintenance of the network
 Refurbishment
 Sound interferences
 Global regulation

Atic or HVAC professionals

Decentralized system

- Easy to install
 Reduced ducting work
 Easy to maintain
 On demand regulation
 Flexible
 Pre-calibrated mass flows
- Filter change requires multiple access

What does it look like?

Regulation and policies tertiary buildings

- Non-homogeneities between European countries
- Belgium decree based on EN13779 Standard

Category	Unit	Rate of outdoor air per person					
		Non-smo	king area	Smoking area			
		Typical range	Default value	Typical range	Default value		
IDA 1	l.s ⁻¹ .person ⁻¹	> 15	20	> 30	40		
IDA 2	l.s ⁻¹ .person ⁻¹	10 – 15	12,5	20 - 30	25		
IDA 3	l.s ⁻¹ .person ⁻¹	6-10	8	12 20	16		
IDA 4	l.s ⁻¹ .person ⁻¹	< 6	5	< 12	10		

22-36 m³/h/pers

- Simulations has been made with the mean value of 7,5 l/s/pers
- Number of units has been chosen supposing the maximum occupancy

Energy and comfort analysis of the classroom via a dynamic model

SISAL	Occupancy flow rate = 2700m³/h (100 people)				
SISAL	non-occupancy flow rate = 2700m³/h				
	System A	System C	V1 System D decentralized	V2 Bricker smart and high performance aerating window	
Maximum CO ₂ concentration [ppm]	5000	1500	1500	1500	
Heating demand [kwh]	>>>>	42 676	20 196	11 891	

SISAL	Occupancy flow rate = 2700m³/h (100 people)		
SISAL	non-occupancy flow rate = 200m³/h		
	V1 System D decentralized	V2 Bricker smart and high performance aerating window	
Maximum CO ₂ concentration during the day [ppm]	1500	1500	
Heating demand [kwh]	6855	4633	

Decentralized unit scheme

BRICKER ENERGY REDUCTION IN PUBLIC BUILDING STOCK

On site installation

Control & regulation specification

3 different piloting and control systems are considered:

• Manually (5 constant levels)

• By a **timer** (automatic)

• By CO₂ (or equivalent) sensor

Monitoring (1)

A monitoring of the **CO2** level has been been made **before** the refurbishment project

Monitoring (2)

- Difficulties in monitoring the occupancy
 - Datasheet forms not always completed
 - Behavior uncertainty (doors and windows opening, position of ventilation system, etc.)
- Different monitoring strategies have been tried
 - Fixed probes with internal data logger
 - **IOT** probes
- Comparison between before and after
 - Airtightness has not been monitored before rework program
 - Mechanical ventilation was one brick of the full Bricker system (insulation, airtightness, heating, etc.). This increases the complexity in driving conclusions about the comparison before and after the refurbishment

CO₂ artificial injection

• Goal : **controlled** measure of the CO₂ rate evolution for different ventilation flow rates.

Conclusions

- The Bricker project did allow a scale-up of windows integrated DHRV unit.
- Standards and simulations enables the definition of a **standard replicable module** that has been engineered, realized and tested.
- 22 units have been implemented in 4 classrooms
- This installation has been undertaken consistently with the improvement of additional active and passive improvements
- **By-pass** functionality and **timer control** have been identified as the best strategies for classroom application.
- Monitoring before / after has been organized. First conclusions are:
 - Decentralized ventilation with HR is **effective**: control of the in/out flow rates associated with heat recovery.
 - High attention must be paid to supply air vents (position, flow direction)
 - IOT based sensor are promising but the question of monitoring the occupancy level and behavior is still pending
- Integration remains a big part of the cost. In the future, optimization will facilitate the integration

Perspectives

- Ventilation units installed in the frame of Bricker project are a promising technology that can be still improved
- New project aiming at developing enhanced unit: Silenthalpic
 - Project funded by the Walloon Region involving different industrial partners and research centers
 - Three main pillars:
 - **1. Acoustic** of the unit
 - 2. Design of a heat + mass exchanger
 - **3. Evolving** system (ventilation strategies, communication between units wit IOT, etc.)

Thank You!

