### **Cooling Performance of Macro-Encapsulated Phase Change Material (PCM) Panels: Experimental Investigation and FEM Modelling**

**Basile CHAUDOIR** 

Final thesis for the award of a Master's degree "Ingénieur civil électromécanicien, à finalité spécialisée en energétique"

Academic Year 2022-2023

Presentation for the Marcel Herman Price 2023

#### **Promoter :**

Vincent LEMORT

#### **Supervisor in DTU :**

Ongun B. KAZANCI







## **Presentation Outline**

#### Introduction

- Experimental Methodology
- Experimental Investigation
- Finite Element Method
- Simulation Investigation
- Take home messages

## Introduction : Research Institute





- Leading institute for indoor environment research
- Cutting edge facilities for the studied technology
- Phase Change Materials expertise

### Introduction : Context & Technology



**Cooling Performance of Macro-Encapsulated Phase Change Material (PCM) Panels: Experimental Investigation and FEM Modelling** 



### **Cooling Performance of Macro-Encapsulated Phase Change Material (PCM) Panels: Experimental Investigation and FEM Modelling**



#### **PCM Properties**

- + High heat density → **Thermal storage** 
  - + Temperature fluctuations
  - + Energy Efficiency **†**
  - + Peak shaving & Load shifting
- Low heat conducitivity of materials
- High production costs
- Phase change temperature range (often matched with operative temperature range)

## **Experimental Methodology**

- Panels
- Ceiling

- Heat Gains
- Ventilation

### **Cooling Performance of Macro-Encapsulated Phase Change Material (PCM) Panels: Experimental Investigation and FEM Modelling**



## Test Chamber : Ceiling



- Suspended Ceiling : 48 panels
- Temperature and/or heat flux sensors
- 4 water intakes and exhausts : even cooling



Chamber 6 user guide

### Test Chamber : Heat Gains



## Test Chamber : Ventilation

**Displacement Ventilation** (Uniform air movement) -1 - 1 - 2 - - 1 -Induced Air/ Thermal Plume Diffuser Exhaust

Diffuser

## **Experimental Investigation**

4 comparisons of exp. scenarios

### Comparison 1 : Heat Gain Increase



• 22°C night setpoint (when water circulation stops)







786W of occupancy heat gains

### Comparison 1 : Heat Gain Increase



- T° ranges from ISO standards
- PPD = Predicted Percentage of Dissatisfied

| Category | PPD [%] | $RANGE_{T,c}$ [°C] |
|----------|---------|--------------------|
| I        | < 6     | 23.5-25.5          |
| П        | < 10    | 23-26              |
|          | < 15    | 22-27              |
| IV       | < 25    | 21-28              |

At least **Cat.2** is targeted : comfortable for work

## Comparison 1 : Heat Gain Increase

#### **Heat Extraction**

| Scenario                                      | REF    | 6OCC   |
|-----------------------------------------------|--------|--------|
| Use of water circulation (D N) [h:m]          | 0 5:42 | 0 8:26 |
| Panel Average Heat Extraction Rate $[W/m^2]$  | 6.8    | 10.7   |
| Heat Extracted by circulated water $[Wh/m^2]$ | 264.6  | 465.2  |
| Time share in Cat.II [%]                      | 77.5 % | 29.8 % |

- Panel Extraction Power 1
- Heat Extracted 1
- Thermal Comfort

# More heat extraction required for 6 occupants

### Comparison 2 : Day-active Water Control and Set-points



### Comparison 2 : Day-active Water Control and Set-points



#### Heat Extraction (per unit of panel area)

| Scenario                                      | 6OCC   | 25SP      | 23SP      |
|-----------------------------------------------|--------|-----------|-----------|
| Use of water circulation (D N) [h:m]          | 0 8:26 | 8:09 5:39 | 9:32 5:35 |
| Panel Average Heat Extraction Rate $[W/m^2]$  | 10.7   | 12.3      | 12.8      |
| Heat Extracted by circulated water $[Wh/m^2]$ | 465.2  | 597.8     | 626       |
| Time share in Cat.2 [%]                       | 29.8   | 93.6      | 94.1      |

- System performance †
- Max. Performance of water system reached
- Water circulation use

### **Comparison 3 : Addition of Ventilation**







Thermal Comfort

### <u>Comparison 3 : Addition of Ventilation</u>

25SP 25SPV + <u>ventilation</u>: 20°C inlet air temperature & 210 m^3/h air flowrate

#### **Heat Extraction**

| Scenario                                            | 25SP      | 25SPV  |
|-----------------------------------------------------|-----------|--------|
| Use of water circulation (D N) [h:m]                | 8:09 5:39 | 0 6:18 |
| <b>Panel</b> Average Heat Extraction Rate $[W/m^2]$ | 12.3      | 7.6    |
| Mean Ventilation Heat Extraction Rate $[W/m^2]$     | /         | 27.2   |
| Heat Extracted by circulated water $[Wh/m^2]$       | 597.8     | 302.2  |
| Heat Extracted by ventilation $[Wh/m^2]$            | 0         | 277.1  |
| Time share in Cat.2 [%]                             | 93.6      | 76.3   |

- Ventilation too present
- Water system performance + thermal comfort
- TABS similar operation (only <u>night</u> water circ.)

## Comparison 4 : Attempt of Tight Control



ventilation: (20->22)°C inlet T° & (210->152) m^3/h flowrate Night and day water circulation setpoints set to 23°C







- Good adjustments of ventilation
- Excellent thermal comfort

### **Comparison 4 : Attempt of Tight Control**

25SPV

TIGHT

ventilation: (20->22)°C inlet T° & (210->152) m^3/h flowrate Night and day water circulation setpoints set to 23°C

#### **Heat Extraction**

| Scenario                                        | 25SPV  | TIGHT     |
|-------------------------------------------------|--------|-----------|
| Use of water circulation (D N) [h:m]            | 0 6:18 | 9:45 2:51 |
| Panel Average Heat Extraction Rate $[W/m^2]$    | 7.6    | 11.4      |
| Mean Ventilation Heat Extraction Rate $[W/m^2]$ | 27.2   | 12.43     |
| Heat Extracted by circulated water $[Wh/m^2]$   | 302.2  | 558       |
| Heat Extracted by ventilation $[Wh/m^2]$        | 277.1  | 127.4     |
| Time share in Cat.2 [%]                         | 76.3   | 95.8      |

- Ventilation less dominant
- Excellent thermal comfort
- Radiant system similar operation
- More water circulation

## **Finite Element Method**

## Finite Element Method (FEM)



- + Geometry taken into account
- + Precise results
- Critical analysis of results or validation required

## **Simulation Investigation**

**Design and validation of three 2D transient models** 

### Realistic Model : Geometry based on panel measurements

Steel Copper Air Water Aluminum PCM **Ferrite Magnet Meshing** 

Geometry and materials

Study on element size has been done for yellow part

### Realistic Model : Geometry based on panel measurements



#### **Boundary Conditions for simulation (occupancy)**

### Simpler Model : Geometry with simplified aluminum fin

#### Geometry and materials



#### **Validation**

| Model                   | RMSE <sub>T</sub>    | RMSE <sub>Q</sub> | $\mathrm{RMSE}_{\dot{\mathbf{Q}},\mathbf{Th}}$ |
|-------------------------|----------------------|-------------------|------------------------------------------------|
| Non-occupancy           | $0.17 \ [^{\circ}C]$ | 0.042 [kW]        | 0.036 [kW]                                     |
| Occupancy               | $0.43 \ [^{\circ}C]$ | 0.051 [kW]        | 0.024 [kW]                                     |
| Non-occupancy (Simpler) | $0.13 \ [^{\circ}C]$ | 0.064 [kW]        | 0.017 [kW]                                     |
| Occupancy (Simpler)     | $0.36 \ [^{\circ}C]$ | 0.058 [kW]        | 0.013 [kW]                                     |
| Max. admissible         | $1.5 \ [^{\circ}C]$  | 0.06 [kW]         | 0.06 [kW]                                      |

Model validated using :

- temperature measurements
- theoretically computed heat fluxes
- Almost validated using HF sensors

### Simpler Model : Geometry with simplified aluminum fin



#### Study on PCM vertical temperature stratification

Comparison of top PCM layer temperature evolution for realistic and simpler models

PCM top layer T° evolves **faster** for realistic model



Aluminum fins **enhance** PCM layer vertical thermal conductivity

#### TABS Model : Geometry of the Type 399 TABS model of TRNSYS



#### TABS Model : Geometry of the Type 399 TABS model of TRNSYS



#### **Validation**

| Model                           | RMSE <sub>T</sub>    | $RMSE_{\dot{Q}}$ | $\mathrm{RMSE}_{\dot{\mathbf{Q}},\mathbf{Th}}$ |  |
|---------------------------------|----------------------|------------------|------------------------------------------------|--|
| Non-occupancy                   | $0.17 \ [^{\circ}C]$ | 0.042 [kW]       | 0.036 [kW]                                     |  |
| Occupancy                       | $0.43 \ [^{\circ}C]$ | 0.051 [kW]       | 0.024 [kW]                                     |  |
| Non-occupancy (TABS equivalent) | $0.17 \ [^{\circ}C]$ | 0.063 [kW]       | 0.035 [kW]                                     |  |
| Occupancy (TABS equivalent)     | $0.51 \ [^{\circ}C]$ | 0.043 [kW]       | 0.031 [kW]                                     |  |
| Max. admissible                 | $1.5 \ [^{\circ}C]$  | 0.06 [kW]        | 0.06 [kW]                                      |  |

Model validated using :

- temperature measurements
- theoretically computed heat fluxes
- Almost validated using HF sensors

## Take Home Messages



## FEM models assumptions

#### **Assumptions and parameters**

- Purely thermal model (no flow)
- PCM has constant density
- Constant material properties w.r. to temperature
- Operative temperatures = ambient temperatures
- Adiabatic upper plate of the panel
- Simulation inputs were measurements or computed using theoretical correlations/usual values
- Simulation outputs were **panel center** surface temperature and heat flux