Combined Heat and Power Plants - Sizing and Integration ATIC

Prof. P. Dewallef September 2018

Université de Liège - Faculté des Sciences Appliquées

Back to basics

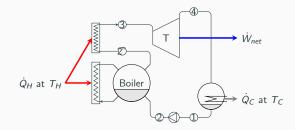
Performance of CHP Plants

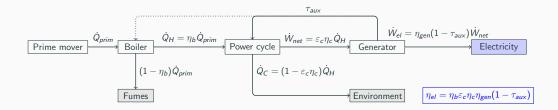
Different Types of CHP Plants

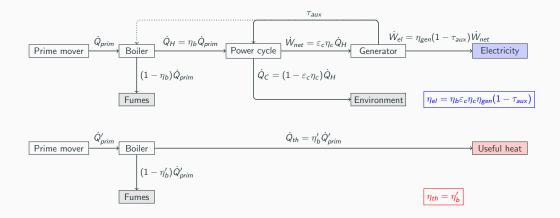
Economical Evaluation of Combined Heat and Power

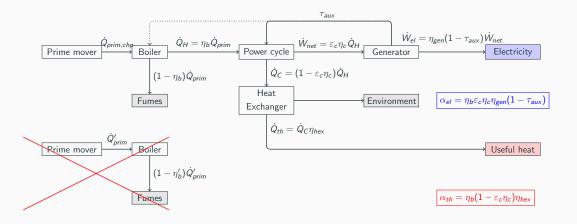
Example Case Study

Back to basics




Figure 1 – Backpressure turbine


Applying the first and second principles of Thermodynamic leads to :


$$\begin{cases} \dot{W}_{net} = \varepsilon_c \eta_c \dot{Q}_H \\ \dot{Q}_C = \dot{Q}_H - \dot{W}_{net} \end{cases}$$

Where

$$\eta_c = 1 - \frac{T_C}{T_H}$$
$$\varepsilon_c = 50 \%75 \%$$

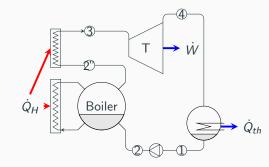
Performance of CHP Plants

Based on energy

$$\begin{cases} \alpha_{el} = \frac{\dot{W}_{el}}{\dot{Q}_{prim,chp}} = \eta_b (1 - \varepsilon_c \eta_c) \eta_{hex} \\ \alpha_{th} = \frac{\dot{Q}_{th}}{\dot{Q}_{prim,chp}} = \eta_b (1 - \varepsilon_c \eta_c) \eta_{hex} \end{cases} \rightarrow \eta_{chp} = \alpha_{el} + \alpha_{th}$$

Based on exergy where T_{th} is the temperature of the useful heat.

$$\eta_{ex,chp} = \frac{\dot{W}_{el} + \dot{Q}_{th} \left(1 - \frac{T_0}{T_{th}}\right)}{\dot{m}_c \ e_c} = \frac{\alpha_{el}}{f} \left[1 + \phi \left(1 - \frac{T_0}{T_{th}}\right)\right]$$


For separate production : $\dot{Q}_{prim,sep} = \frac{\dot{W}_{el}}{\eta_{el}} + \frac{\dot{Q}_{th}}{\eta_{th}}$ For combined generation : $\dot{Q}_{prim,chp} = \frac{\dot{W}_{el}}{\alpha_{el}} + \frac{\dot{Q}_{th}}{\alpha_{th}}$

The primary energy saving is thus :

$$\textit{PES} \triangleq rac{\dot{Q}_{\textit{prim},\textit{sep}} - \dot{Q}_{\textit{prim},\textit{chp}}}{\dot{Q}_{\textit{prim},\textit{sep}}} = 1 - rac{1}{rac{lpha_{\textit{el}}}{\eta_{\textit{el}}} + rac{lpha_{\textit{th}}}{\eta_{\textit{th}}}}$$

Different Types of CHP Plants

Backpressure Steam Cycles

 $\begin{aligned} \alpha_{el} &= 18 \%...26 \% \\ \alpha_{th} &= 70 \%...60 \% \\ \eta_{chp} &\simeq 88 \% \\ \eta_{ex,chp} &= 32 \%...39 \% \\ PES &= 22 \%...30 \% \end{aligned}$

Figure 2 – Backpressure turbine

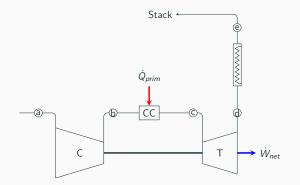
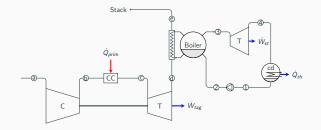


Figure 3 – Gas Turbine


$$\alpha_{el} \simeq 30 \%$$

$$\alpha_{th} \simeq 55 \%$$

$$\eta_{chp} \simeq 85 \%$$

$$\eta_{ex,chp} = 55 \%$$

$$PES \simeq 10 \%$$

 $\begin{aligned} &\alpha_{el}\simeq 35\,\%\\ &\alpha_{th}\simeq 50\,\%\\ &\eta_{chp}\simeq 85\,\%\\ &\eta_{ex,chp}\simeq 45\,\%\\ &PES\simeq 15\,\% \end{aligned}$

Figure 4 - Combined Cycle

Internal Combustion Engine

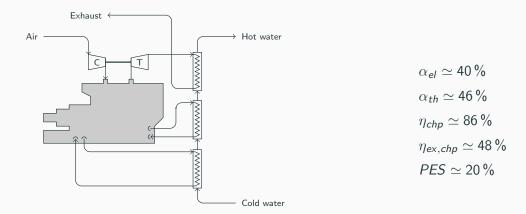


Figure 5 – Internal combustion engines

Economical Evaluation of Combined Heat and Power

Definition

The excess of the present value (PV) of cash inflows generated by the project over the amount of the initial investment C_0 .

$$NPV = PV - C_0 = \sum_{k=1}^{N} A_k (1+d)^{-k} - C$$

For constant cash inflows, $NPV = A/\psi - C$ where $\psi = \frac{d}{1 - (1 + d)^{-N}}$.

Decision rule

If NPV is positive, accept the project. Otherwise, reject it.

The rule of "six tenths"

As size increases, cost increases by an exponent of six-tenths.

$$C = C_{ref} \left(\frac{P_{rated}}{P_{rated, ref}}\right)^{0.6}$$

- Generally speaking, costs are increasing with an exponent *a* whose value is between 0.3 (building, civil works) to 1.0 (scale-up by installation of multiple units).
- Inflation λ can influence the reference cost C_{ref} according to $C_{ref,N} = C_{ref,0}(1+\lambda)^N$.
- For developing technologies, reference costs may decrease due to increasing production volumes.

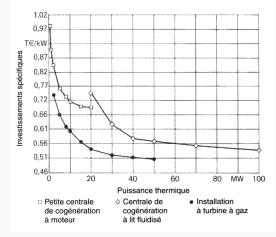
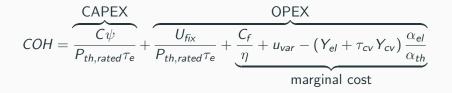


Figure 6 – Coûts spécifiques de différentes installations


For constant equivalent utilisation time and constant conversion efficiency over the project lifetime, the total system cost is :

$$TSC = \sum_{k=1}^{N} \left[C\psi(1+d)^{-k} + \left(\frac{P_{rated}\tau_e C_f}{\eta} + U_{fix} + u_{var} P_{rated}\tau_e \right) (1+d)^{-k} \right]$$
$$= \frac{P_{rated}\tau_e}{\psi} \left(\frac{C\psi}{P_{rated}\tau_e} + \frac{C_f}{\eta} + \frac{U_{fix}}{P_{rated}\tau_e} + u_{var} \right)$$

$$LCOE = \frac{TSC}{\frac{P_{rated}\tau_e}{\psi}} = \underbrace{\frac{CAPEX}{P_{rated}\tau_e}}_{P_{rated}\tau_e} + \underbrace{\frac{OPEX}{U_{fix}}}_{P_{rated}\tau_e} + \underbrace{\frac{C_f}{\eta} + u_{var}}_{marginal \ cost}$$

- Electricity is already available at low cost (without tax ! !) from the grid while there is no global market for heat.
- Heat is difficult to transport.

Heat is the main product and electricity is the by-product !

Example Case Study

Energy Integration of a CHP Plant

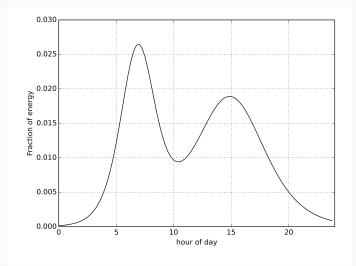


Figure 7 – Non-dimensional heat consumption profile (Sart-Tilman Campus)

Load curve for heat demand

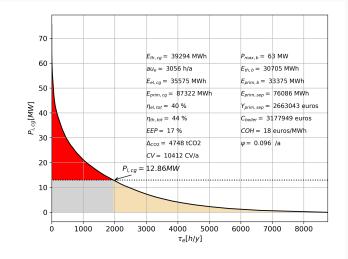


Figure 8 – Cumulative heat load for Sart-Tilman campus (total of 70 000 MWh/y).

Optimizing the Size of a CHP

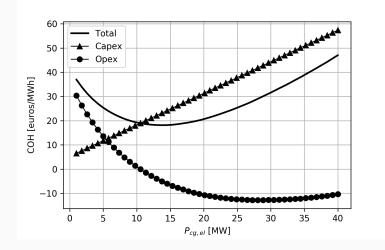


Figure 9 – COH versus CHP plant size