BOUW EEN "COOL" DATACENTER CONSTRUIRE UN DATACENTER "COOL"

EFP

25 jan 2012

Ing. Johan Verplaetsen
CEO Menerga

- 32 years experience in ventilation & air conditioning in almost any application or sector
- Specialized in energy recuperation and saving
- 32 years know-how in measuring & control
- more than 20 patents active
- Wide range of products for air conditioning & ventilation, compact hybrid chillers, energy recuperation from waste water.
- · Present in 27 countries
- Local service support available

Presentation

Available to download at www.atic.be

Build a "cool" Data Center

Lowering power consumption,

CO₂ emission...

Getting to the real Green IT!

Build a "cool" Data Center

Lowering power consumption,

CO₂ emission...

Getting to the real Green IT!

Topics

- Importance of cooling on total energy consumption (Facts & Figures)
- Design Basics
- Different cooling systems compared
- · Principle of the indirect adiabatic cooling system
- · Advantages of indirect vs. direct free cooling
- Energetic comparison
- Intrinsic redundancy
- References

Facts & Figures (1)

- Definitions:
 - PUE = Power Usage Effectiveness

= Total Facility Power / IT Equipment Power

– DCiE = Data Center infrastructure Efficiency

= IT Equipment Power / Total Facility Power

→ PUE = 1 / DCiE

menerga

Facts & Figures (2)

What is the Total Facility Power?
 Data center energy consumption model

Ω

Facts & Figures (3)

What is the cost for cooling?

Facts & Figures (4)

Energy consumption of DC in Germany

Facts & Figures (5)

• Energy costs of DC in Germany

11

Facts & Figures (6)

• What is the average PUE of DC worldwide?

Berkeley National Laboratory, Peter Famsey, Francey Engineers, Bruce Myott, EVP Mission Critical Facilities

Facts & Figures (7)

- Maximum allowed PUE:
 - Amsterdam : permit only if PUE < 1,3Extra taxes for existing DC with PUE > 1,3
 - London: CO2 taxes for DC based on PUE
 - Luxembourg: only 2% VAT for Green DC

— ...

13

Facts & Figures (8)

• How to reduce the PUE?

Design basics(1)

- 1 x 1 > 1
 - 1 Watt during 1 Year > 1 €
 - Each kW of continuous power use means a cost of more than 1.000€ yearly
 - DC uses 10s to 1000s of kW.
 - Power use must be lowered to its minimum level
 - Every Watt counts!

15

Design basics₍₂₎

- 27
 - According to ASHREA, a room temp of 27°C is acceptable for IT-equipment.
 - The higher the room temperature is set, the more free cooling is possible
 - For comfort reasons, one might not accept 27°C, but that is no reason to set it at 18°C room temp.

Design basics(3)

Table 2.1 Equipment Environment Specifications

					Equipme	ent	Environmen	ıt s	Spec	cificatio	ns				
	Product Operation ^{a,b}											Product	Power Off	_	
Class			Bulb ture (°C)		Hun	Relative Humidity (%) Non-Condensing			Max. Dew Point (°C)	Max. Elevation (m)	Max Rate of	Dry-Bulb Femperature (°C)	Relative Humidity (%)	Max. Dew Point (°C)	
	Allowable	R	tecommende	ı	Allowable	R	Recommende	d	Max. Dew	Max. Elev	Max F	Dry- Tempera	Rels Humid	Max. Dew	
		Н		_				Н						_	
1	15 to 32 ^d		20 to 25		20 to 80		40 to 55		17	3050	5	5 to 45	8 to 80	27	
2	10 to 35 ^d		20 to 25		20 to 80		40 to 55		21	3050	5	5 to 45	8 to 80	27	
												_			
3	5 to 35 ^{d,e}		NA		8 to 80		NA		28	3050	NA	5 to 45	8 to 80	29	
														_	
4	5 to 40 ^{d,e}		NA		8 to 80		NA		28	3050	NA	5 to 45	8 to 80	29	

Atic for HVAC professionals

Source: ASHRAE

17

Design basics(4)

ASHRAE Environmental Guidelines for Datacom Equipment

Design basics(5)

- 300
 - 1 kW Peak Power can cost up to 300€!
 - Depending on MV-contract, extra Peak Power can have a high penalty
 - Reduce investments!
 MV-transformers, UPS and diesel no-breaks are very expensive. Reducing the peak power in summer will avoid a lot of investments.
 - → reducing the Peak Power for cooling in summer is very important!

19

Design basics₍₆₎

- 1,30
 - Total yearly PUE < 1,30 is the target!
 - Since cooling is the major power user, the PUE of the cooling needs to be under 1,11
 - The complete design of the DC needs to be focused on this target

 Actual Indirect adiabatic

Design basics₍₇₎

Cold & warm aisle

21

Design basics(8)

· Cold & warm aisle

Design basics₍₉₎

Cold & warm aisle
 Please provide space for cables AND air

Design basics(10)

Cooling systems (1)

- Which cooling systems exist?
 - Cooling by water distribution (provided by chiller)
 - · Without free cooling
 - · With free cooling to water circuit
 - DX systems in DC, with dry-cooler on the roof
 - Direct free cooling
 - Indirect free cooling
 - Indirect free cooling with evaporative "adiabatic" cooling

25

Cooling systems (2)

Cooling by water distribution,

without free cooling

Cooling systems (3)

- Cooling by water distribution, without free cooling
 - Draw backs:
 - · Highest power consumption
 - · Highest peak power level
 - No "green cooling" possible
 - Expensive UPS, diesel no-breaks and MV-transformer because of peak power level
 - Water circuit might have to be redundant.
 - · Poor EER of chiller

27

Cooling systems (4)

 Cooling by water distribution, with free cooling

Cooling systems (5)

Cooling by water distribution,

with free cooling

- Draw backs:
 - High power consumption
 - Highest peak power level
 - Only partial "green cooling" possible
 - Expensive UPS, diesel no-breaks and MV-transformer because of peak power level
 - Water circuit might have to be redundant.
 - · Poor EER of chiller

29

Cooling systems (6)

• DX systems in DC, with dry-cooler on the roof

Cooling systems (7)

- DX systems in DC, with dry-cooler on the roof
 - Draw backs:
 - High power consumption
 - Highest peak power level
 - no "green cooling" possible
 - Expensive UPS, diesel no-breaks and MV-transformer because of peak power level
 - Redundancy expensive / difficult.
 - Poor EER of chiller

31

Cooling systems (8)

Direct free cooling

Cooling systems (9)

- Direct free cooling
 - = not widely accepted in Europe

33

Cooling systems (10)

- Direct free cooling
 - Draw backs (ref: IBM)
 - Atmospheric influences (dust, gas)
 - Pressure drop by air filters
 - · Humidity drops in winter
 - High power use for humidification
 - Problems with fire extinguishing (unable to use gas)
 - · Chiller is still needed, at maximum capacity
 - · High peak power level
 - Expensive UPS, No-Break, MV-transformer
 - Risk for sabotage or at the event of large chemical accidents

Cooling systems (11)

• Indirect free cooling

35

Cooling systems (12)

- · Indirect free cooling
 - Draw backs
 - Pressure drop by fresh air filters
 - Chiller is still needed, at maximum capacity
 - High peak power level
 - Expensive UPS, No-Break, MV-transformer
 - High fresh air volume (same quantity as return air) inducing higher energy consumption

Cooling systems (13)

 Indirect free cooling with evaporative "adiabatic" cooling

37

Cooling systems (14)

- Draw-ba
 - Water to be of
- Benefits
 - Lowes
 - Lowes
 - Lowes
 - Lowes
 - Low fr
 - Compact and

Cooling systems (15)

- Comparison of 4 systems
 - System 1: Chiller without free cooling
 - System 2: Chiller with free cooling
 - System 3: Direct free cooling
 - System 4: Indirect adiabatic free cooling with DX
- · System design:
 - 35°C/40% outside air
 - 34/20° return/supply air
 - 40 to 60% rh room
 - Climate conditions @ Essen (Germany)
 - 50 kW Server load

39

Cooling systems (16)

Comparison

86.901 kWh

System 4: Indirect "adiabatic" free cooling with DX

Atic

Cooling systems (17)

Comparison

Cooling systems (18)

Comparison

Cooling systems (19)

Comparison

System Design (1)

• PUE calculation for :

- Data Center with 375 kW of server load

- Region of Brussels

- Cold corridor: 20°C

- Warm corridor: 30°C

System Design (2)

- PUE calculation includes:
 - Pumps for Adiabatic Cooling
 - DX cooling
 - Fans
 - Don't forget : the power consumption of the fans is cooling load too!
 - Climate data for Uccle (Brussels)

45

System Design (4)

PUE calculation

System Design (5)

PUE calculation

. .			
Total energy consumption for cooling	232	MWh	
Total net cooling energy	3.285	MWh	
Total indirect cooling energy	3.316	MWh	
Total DX cooling energy	81	MWh	only 2,4% of cooling energy
Peak DX cooling power	202,5	kWcool	is delivered by DX!
Peak power consumption	82,2	kWe	
100% free cooling up to	17,0	°C	
50% free cooling up to	31,0	°C	
PUE	1,071		
Evaporated water	3.375	m³	
Water consumption	6.749	m³ at thicking =	2
	5.062	m³ at thicking =	3
	4.500	m³ at thicking =	4
/		_	48

System Design (6)

PUE calculation

Total Energy consumption cooling

System Design (7)

- Indirect "adiabatic" cooling
 - Developed by Menerga in 1993
 - Used for cooling and ventilation of all kinds of buildings
 - Since 1994 DX cooling as option
 - Since 2007 with DigiScroll® compressors from Copeland®
 - System was adapted in 2010 for rooms with high thermal loads, like Data Centers.
 - Mathematic model confirmed by long-term measurements

гο

System Design (8)

- · Practical design
 - Most important elements are
 - Polypropylene recuperator with huge thermal surface

System Design (9)

- Why recuperator in polypropylene?
 - Totally inert to corrosion or degradation in time
 - Possible to integrate adiabatic cooling IN the recuperator
 - Resists to high pressure differences between air flows (important in combination with fire dampers)
 - Can be built in greater dimensions than aluminum recuperators
 - Low air pressure drop
 - Can easily be cleaned
 - High thermal efficiency (only 0,8% loss compared to alu)
 - Carbon footprint is 5 times lower at production of PP compared to Alu
 - PP is totally recyclable in the same product quality

52

System Design (10)

- · Practical design
 - Most important elements are
 - Polypropylene Recuperator with huge thermal surface
 - Integrated humidification all over the recuperator
 - Integrated DX cooling with DigiScroll compressor
 - → 10 to 100% capacity control
 - Intelligent DDC controller with mathematic model can predict behavior of the system at different air conditions or thermal load
 - → automatically best running conditions are selected

System Design (11)

- Practical design
 - Water for adiabatic cooling
 - Different types of water sources can be used e.g. rain water, tap water, source water, lake water (with water treatment)
 - · No risk for legionella
 - Intrinsic redundancy
 - Multiple fans
 - · Option: Integrated DX cooling selected for full thermal capacity
 - Double adiabatic pump

System Design (12)

- Practical design
 - Option: Water condensor to heat offices in winter using water at 40/30 °C,
 - → Cheapest heating energy for offices
 - →In one or more units installed

0

Atic for HVAC profess

Q

Intrinsic Redundancy (1)

- Number of units defined by redundancy rule:
 - Mostly N+1
- Few huge units
 - → high investment for redundancy
- Many smaller units
 - → Higher redundancy and lower investment
 - → Easier maintenance
 - → Better MTTR
 - → Possibility to let the data center "grow"

75

Intrinsic Redundancy (2)

- Menerga® AdCoolAir® is built with:
 - Multiple fans in airflow
 - → drop-out of 1 fan still maintains the functioning
 - → Easy to replace (< 40 kg) and short MTTR
 - → Smaller fans with longer lifetime of the bearings
 - DX can be selected to backup the indirect cooling
 - Double adiabatic pump (except for smallest units)
 - Control cabinet with redundancy control by "heartbeat-check" at different levels

Intrinsic Redundancy (3)

- Back up unit is running too,
 - → shorter reaction time at unit breakdown
 - → Even better performance during summer

77

References

- Biggest
 - Banco Santander, Spain
 - 17 MW total cooling power
 - Units of 450 kW each
 - Redundancy N+2
- Smalest
 - Comunicode, Germany
 - 20 kW cooling power
 - 1 unit
 - No redundancy

Build a "cool" Data Center

Lowering Power consumption, CO₂ production...

Is also a matter of

- virtualization: use CPU power at its max to get the same IT power for less energy consumption
- Intelligent server : temporarily shut down ¼ or ½ of a quad-core CPU
- → www.sizingservers.be

79

Build a "cool" Data Center

Lowering Power consumption,

CO₂ production...

Having the real Green IT!

